

Aleksei Gabnasyrov

"Domanik shale oil: unlocking potential"

Areas of Unconventional Resource potential within PJSC LUKOIL's leasehold/licenses in Volga-Ural and Timan-Pechora provinces

Results of Domanik Shale Studies by PJSC LUKOIL

Properties comparison of Domanik shale and other well-known shale basins in North America

Potential for implementation of the lessons learned during pilot studies of Domanik shale to successfully develop Domanik as an unconventional resource play

Future steps: program of additional studies of Domanik Shale at PJSC LUKOIL's license areas

Main results of Bazhenov Shale Studies by PJSC LUKOIL

Volga-Ural and Timan-Pechora provinces: Unconventional Potential

Always moving forward!

Map of Domanik Shale Formation Within the Russian Federation Territory

Domanik deposits are the main oil source rocks for Timan-Pechora and Volga-Ural oil&gas provinces

Always moving forward!

Oil&Gas Potential of Domanik Deposits

- Republic of Tatarstan: over 330 targets have been tested with 44 cases of inflow
- Republic of Bashkortostan: over 100 t/day obtained within Belskaya depression areas
- Perm Oblast: 163 targets have been tested, with oil rate over 1 t/day obtained in 14 cases
- Republic of Udmurtia: most wells have been dry, 10 wells were wet, and 7 wells with oil inflow rate of 7 m³/day
- Samara Oblast: 120 targets of which 34 targets have produced oil. The maximum oil and water inflow rate of 55 m³/day has been obtained in the Domatovskaya area from the Buregsky horizon
- Orenburg Oblast: 34 targets of which 9 targets have produced oil. The maximum oil inflow rate over 100 m³/day has been obtained in the Tverdilovskaya area
- Water inflows were found in 43 cases within Samarskaya and Orenburgskaya areas
- Timan-Pechora province: oil inflow in 48 wells, Qo of up to 88 t/day

Oil-gas saturation of Domanik deposits has been confirmed by number of well tests throughout the development area

Results of Domanik Shale Studies by PJSC LUKOIL

Always moving forward!

The Domanik formation within Volga-Ural and Timan-Pechora Provinces covers ~232 000 km²

Total Organic Carbon (TOC) Map of the Domanic Formation

✓ Within Domanik formation there are large areas where TOC ranges from 2 to 5 % and occasionally up to 23 %

 \checkmark TOC content was determined based on Geochemical data and core analysis in 4 wells

✓ Where no core analysis was available, TOC was determined based on TOC = f(GR), which could lead to major errors

Types of Organic Matter

Results of Geochemical Core Analysis. Well #199 and #200 (Andreevskaya Area)

#199

The estimated oil generation potential is good and very good;

> Geochemically, domanik deposits are promising as potential sources of shale oil and gas.

Pyrolysis results based on Rock Eval analysis

Parameter	Value				
тос	<u>2.5–23.3</u> 13.7				
S1 + S2	<u> 14–119 </u>				
PI	<u>0.12–0.17</u> 0.14				
HI <u>400–516</u> 450					
Catagenesis stage MK1					
TOC total organic carbon of rock % wit					

HI – hydrogen index, mg HC/g TOC.

PI - productivity index, S1/(S1+S2)

S1+S2 - generic ponential of rock, mg HC/g rock

Generation potential of rocks based on Rock Eval analysis. Well 200 Andreevskava бедный низкий хороший отличный 10D01151 (S1+S2), Mr VB/r 10 ТОС, масс. %

Always moving forward!

лет Млукойл

Thermal Maturity Maps of Domanik Shale (based on Vitrinite Reflectance)

Ro map of the Bakken field

Градация Ro,% ПК. 0.25-0.3 0.3-0.4 200 ПКЗ 0.4-0.53 MK1 MKC 0.65-0.85 МК MK3 199 MK МК AK1

Ro map of Samara Oblast domaniks

Ro map of Perm Krai domaniks

MI

Domanik horizon catagenetic zoning maps based on geochemical studies of wells show promising areas ($Ro \ge 0.6$) in all the three regions

АКЗ

3.5-6.0

TOC and R₀ Comparison of Domanik Shale of Perm Krai and US Shale Formations

TOC and Thermal Maturity of Domanik Shale is comparable and as good as commercial shale deposits in the USA

Luminescent – Bituminological Analysis

199 Andreevskaya

Глубина	Глубина	Номер	Литология	Люминесцентное свечение	Номер	Длина	Тип
отбора	отбора	образца		хлороформенной капиллярной вытяжки	эталона	капиллярной	ХБА
образца,	образца				ХБА	вытяжки,	1
м	увязанная,			Длина капиллярной вытяжки, мм		мм	1.6
	м			0		1	
2417,00	2415,30	1			11	40	MC
2420,72	2419,02	2	*******	D2mn	10	61	MC
2422,48	2420,78	3		Domini	11	41	MC
2434,15	2432,45	4			13	163	МС и СА
2435,40	2433,70	5			13,5	145	МС и СА
2436,90	2435,20	6			13,5	105	МС и СА
2438,85	2437,15	7		D3am	13,5	149	МС и СА
2439,95	2438,25	8			14	140	МС и СА
2440,90	2439,20	9			14	146	МС и СА
2442,45	2440,75	10			14	141	МС и СА
2448,70	2447,20	11			9	33	MC
2449,28	2447,78	12		D3cr	8	21	MC
2453,00	2451,50	13		000	8	26	MC
2453,90	2452,40	14			7	15	MC
2454,28	2452,78	15		D2tm	6	14	MC
2455,60	2454,10	16		DStm	6	37	MC

296 Pavlovskaya

Исходная привязка Привязка по результатам образца, м гамма-сканирования, м		Привязка по результатам гамма-сканирования. м		Номер	Люминссцентное свечение хлороформенной капиллярной вытяжки		Номер	Длина	Tom VE A	
		образца	образца Длина капиллярной вытяжки, мм		эталона ХБА	вытяжки, мм	THILADA			
От	До	От	До				 a star and	12 24		
2075,48	2075,55	2074,48	2074,55	1				11,5	31	CA
2077,37	2077,50	2076,37	2076,50	2				11,5	40	CA
2079,45	2079,53	2078,55	2078,63	3				11,5	45	MC
2081,19	2081,33	2080,29	2080,43	4			D3mn	12	63	CA
2083,62	2083,72	2082,72	2082,82	5				11,5	53	MC
2084.77	2084.84	2083.87	2083.94	6				12	39	CA
2088,02	2088,14	2087,12	2087,24	7				14	149	CA
2089,84	2089,91	2088,94	2089,01	8				14	144	CA
2091,48	2091,56	2090,58	2090,66	9				14	146	CA
2093,25	2093,35	2092,35	2092,45	10			Daam	14	150	CA
2095,54	2095,62	2094,64	2094,72	11				14	149	CA
2097,11	2097,18	2096,31	2096,38	12				14	142	CA
2099,22	2099,31	2098,42	2098,51	13				14	141	CA
2101,07	2101,13	2100,27	2100,33	14				14	149	CA
2103,62	2103,70	2102,82	2102,90	15				14	140	CA
2105.27	2105 37	2104 57	2104.67	16				14	135	CA

\leq	Глубина	Глубина	Номер	Литология	Люминесцентное свечение	Номер	Длина	Тип
1	отбора	отбора	образца		хлороформенной капиллярной вытяжки	эталона	капиллярной	XБA
	образца,	образца	-			XБA	вытяжки,	
	M	VERSOULOG			Плина капиллярной вытажки мы		MM	
		,			дляна каналлярной выгляжки, ям			
÷.,		м			9, 25 , 50 , 75 , 100 , 125 , 150 , 175 , 200			
10.1	2266,89	2265,59	34			13	109	MC H CA
	2268,11	2266,81	35			13	125	MC H CA
	2269,13	2267,83	36			14	148	MC H CA
	2270,01	2268,71	37			14	137	MC H CA
	2270,87	2269,57	38		D2dm	14	147	MC H CA
	2273,13	2271,83	39		DSuill	14	140	MC H CA
	2273,73	2272,43	40			14	165	MC H CA
	2276,05	2274,75	41			12	68	MC H CA
	2277,95	2276,65	42			13	125	MC H CA
	2279,06	2277,76	43			13,5	145	MC и CA
					41.04 M			
	2220.00	2219 90	17			9	112	IIM
	2320.00	2319.78	18		D O true	12.5	167	MC
	2322.85	2321.65	19		DStm	12.5	164	MC
	2323.15	2322.15	20			5	17	Л
100	2323,78	2322,78	21	z+z+z+z+z+3		5	15	л
10	2323.95	2322.95	22			5	15	л
	2324,76	2323,76	23			4,5	13	л
15	2325,80	2324,80	24		D2ma	4	10	л
1	2326,25	2325,25	25		D3DS	4	7	л
	2327,05	2326,05	26			4	5	л
	2327,56	2326,56	27			4	5	л
	2327,95	2326,95	28			4	6	л
	2328,50	2327,50	29			4	4	л
	2328,85	2327,85	30			5	27	ЛиС
	0001 14	0000 55		and it was a size of some of some of some				W 63

200 Andreevskaya

266 Zabrodovskaya

Исходная образ	привязка зца, м	Привязка по гамма-скан	результатам вирования, м	Номер образца	Люминесцентию свечение хлороформенной капилларной вытяжки Длина капиллариой вытяжки, мм	Номер эталона ХБА	Дливна капиллярной вытяжки мм	Тип ХБА
От	Ло	OT	Ло	24	9			
2241 34	2241 42	2242.74	2242.82	1		11.5	28	C MC
2244.30	2244.39	2245.70	2245.79	2		11	30	MC
2246.00	2246.09	2247.40	2247.49	3		11	27	MC
2250.10	2250.20	2251.50	2251.60	4		11	25	MC
2252.30	2252.38	2253.70	2253.78	5		11	21	MC
2254.28	2254.39	2255.68	2255.79	6		11.5	58	MC
2256,78	2256.85	2258.18	2258.25	7		11	23	MC
2258,70	2258,79	2260.70	2260.79	8		11	22	MC
2260.35	2260.44	2262.35	2262.44	9	D2mn	11	23	MC
2262.73	2262.81	2264.73	2264.81	10		11	24	MC
2264.80	2264.89	2266.80	2266.89	11		11.5	21	C. MC
2266.00	2266.09	2268.00	2268.09	12		11.5	28	MC
2269.82	2269.90	2272.22	2272.30	13		11	24	MC
2271.93	2272.03	2274.33	2274.43	14		11	29	MC
2276,50	2276,59	2279,20	2279,29	15		11	25	MC
2277,50	2277,61	2280,20	2280,31	16		11	34	MC
2282,89	2283,01	2285,59	2285,71	17		12,5	42	MC, CA
2284,15	2284,22	2286,85	2286,92	18	mb2dm	12,5	24	MC, CA
2286,94	2287,01	2289,64	2289,71	19		14	138	CA
2288,82	2288,89	2291,52	2291,59	20		14	142	MC, CA
2289,45	2289,53	2292,15	2292,23	21		14	143	CA
2292,48	2292,59	2295,18	2295,29	22		14	154	MC, CA
2294,86	2294,94	2298,06	2298,14	23		14	146	CA
2296,71	2296,79	2299,91	2299,99	24		14	141	CA
2298,70	2298,78	2301,90	2301,98	25		12,5	43	CA

Domanik formation rocks feature high saturation

Always moving forward

7,0

5,5

4.0

2,5

Free oil, mg/g TOC

Jarvie Oil Saturation Index

Core analysis of LUKOIL PERM LLC wells shows that unconventional reservoirs has potential for production

Длет Тукойл

Domanic Mineralogy

Mineral composition of domaniks within Volga-Ural and Timan-Pechora oil and gas provinces

The prevailing mineral composition of domanik shale is similar to one of the U.S. largest Eagle Ford shale deposits and is promising for good reservoir quality properties and efficient multi-stage hydrofracturing

Fracturing

Due to extremely low permeability it is required to maximize the contact area between the matrix and highly permeable filtration channels by detecting natural fracturing areas and creating artificial fracturing areas

Fragment of Perm Krai basement tectonic map

Many faults result in favorable conditions for domanik development

16

Comparison of Domanik shale and other well-known shale basins in North America

Domanik Shale vs. Major US and Canadian Unconventional Basins (Kimmeridge Energy, 2014)

										-
Paria	New Albany (US)	Bakken (US)	Exshaw (US/Canada)	Duvernay (Canada)	Domanik (Russia)	Domanik (Russia)	Eagle Ford	Woodford	Wolfcamp	Kaliningr ad
Basin	Illinois Basin	Williston Basin	WCSB	WCSB	Timan-Pechora	Volga-Ural	Maverick Basin	Anadarko Basin	Delaware Basin	Baltic
Age	Upper Devonian	U. Devonian-Miss	Upper Devonian	Upper Devonian	Upper Devonian	Upper Devonian	Upper Cretaceous	Upper Devonian	U. Penn- L. Permian	Lower Silurian
Area of mature source mass (mln. acres)	6	14	65	49	50	47	11.7	9.6	8.6	1.7
Thickness (ft)	100-300	10–75	10-65	40-240	50-650	80-130	50-600	120-280	200-1800+	390-490
Kerogene type	II	II	II	II	II & I	II & I	II	II/III	I/II/III	II
Sedimentation environment	Marine, anoxic	Marine, anoxic	Marine, anoxic	Marine, anoxic	Marine, anoxic	Marine, anoxic				
Corg content (%)	2.5-12.7	15-25+	1-16+	1–20	1-30*	1-20+				
Average content. Corg (%)	6	19	10	6	6	8/7*	4.7	6	5.4	7
Hydrogen index (mg/g TOC)	450	625	500	500	600	500/450*	650	375	450	400
Maturity (Ro %)	0.85	0.80	0.90	1.25	0.80	0.75*	0.74	1.50	0.90	1.00
S1 (mg HC/g rock)	4.7	12.0	4.3	1.6		-/4.22*	4.8	4.8		
HC potential (S1 + S2)	45	162	57	40	35		32	30		
Generation potential of basin (MMbbl. eq)	143,469	415,613	658,023	1,242,670	2,491,571	1,911,639	>800	280	580	240
Specific generation potential (bbl./acre)	25,243	29,592	10,049	25,145	50,150	40,717				
Drilling depth (ft)	3400-4600	8850–11500	5000–9000	>8000	6500-11500+	6550-13000	4000–10000	6500-10000	5500-11000	4600– 7500+
Quartz content (%)	31–49 %	20-68 %	7–82 %	3–54 %	35-95 %	10–15 %	2–40 %	41-75 %	20-50 %	
Carbonate content (%)	12–36 %	20–60 % (in Middle Bakken)	20–60 %	18–90 %	0–40 %	70 %*	10–90 %	2–14 %	10-60 %	
Porosity (%)	12 %	2–10 %	4–8 %	6–10 %	13	9–12 %*	4–15 %	3–9 %	2–10 %	5.9–15.9 %
Permeability (mD)		0.005–0.01 mD					400–1000 nD	1–1000 nD	10-30000 nD	
Pressure	Normal	Abnormally high formation pressure		Abnormally high formation pressure			Abnormally high formation pressure	Below normal	Abnormally high formation pressure	

Consistent with survey results of wells 199, 200 of Andreevsky, 266 Zabrodovsky and 296 Pavlovsky fields

* Consistent with survey results of wells in Timan-Pechora province

Average parameters of Domanik Shale are similar to the shale deposits in the US and Canada that are currently being successfully developed, confirming the promising potential as an unconventional resource play

Always moving forward!

ШЛУКОЙЛ

HC Potential Estimation of Domanik Formation by "Volumetric-Geochemical" Method

S

h

Сорг Hydrocarbon yield of organic matter vs. maturity, mg/g OCB R,% HC, mg/g C_{og} **Ro**,% Градация 0.25-0.3 0,10 ПК1 0,20 0.25 ПК2 0.3-0.4 0.30 0.40 ПК3 0.4-0.53 0.50 0,60 266 Забродовская Нефть 0.53-0.65 0.65 MK1 0.23 0,70 0.17 MK2 0.65-0.85 0,80 0,85 0.12 0.90 0.06 0.85-1.2 МКЗ 1.00 0.005 1,10 1.2-1.55 MK4 1.15 1,20 Жирный газ **Density map** 1.55-2.05 1,30 MK5 1,40 AK1 2.05-2.5 1,50 of Domanik Formation 1.55 1,60 AK2 2.5-3.5 1,70 АК3 1,80 3.5-6.0 1,90 АК4 6.0-11.0 2.00

When evaluating Unconventional Resources, TOC and Thermal Maturity should be taken into account

Probabilistic Assessment of Domanik Formation Resources within the Perm Krai Territory

	P 90	P 50	P 10
Thickness	D3 _{dm}	D3 _{dm+mn}	D3 _{dm+mn}
Area	Exte	nt area of shallow marine shelf (SM and uncompensated basins (UCE	IS) facies 3)
TOC Organic matter content, %	Based on GR dependence, $C_{org} = f(GR)$	According to experts, based on one-time geochemical surveys	According to experts, based on one-time geochemical surveys
HC generation, mg/g organic matter	Based on general dependence	Based on dependence for domanik organic matter	Based on dependence for domanik organic matter
Amount of expelled HC	Based on one-time geochemical surveys (70 %)	Based on one-time geochemical surveys (70 %)	Based on common value (50 %)
Resources, bln t	0.78	3.57	5.95

Even by pessimistic assessment, Domanik contains huge amounts of hydrocarbons. It is reasonable to plan and conduct additional pilot studies to calibrate the methods of high grading the areas and evaluation of recoverable reserves per well

Potential for implementation of the lessons learned during pilot studies of Domanik shale to successfully develop Domanik as an unconventional resource play

S

.....

S

>

_

σ

σ

Φ

0

Methodology to Develop Successful Well Program

For efficient localization of highly productive zones and successful well locations, these parameters should be determined based on seismic exploration that in turn should be matched with regional surveys, core analysis and well-log data.

Future steps: program of additional studies of Domanik Shale at PJSC LUKOIL's license areas

Domanik deposit study program

Conclusions (Domanik shale)

**

***** Domanik deposits are understudied as a source of Unconventional Resources

Domanik deposits are prospective as a target for shale oil exploration

 Comprehensive program of additional studies and development of Unconventional Resources in LUKOIL's license areas has been established

 It is advisable to allocate experimental sites for testing of unconventional technologies to develop the Domanik formation in a cost-efficient manner

Main results of Bazhenov Shale Studies by PJSC LUKOIL

Mid-Nazym field in South Kanty-Mansiysk

	Start year	1980		
	Operator	AO RITEK		
	Share	100%		
and the second design of the second	Current stage of development	Pilot projects		
	Information about extraction tax raise	Bazhenov deposits, Tyumen deposits, September 2013		

лукойл

Scenarios for selection of effective oil-saturated thickness in the sediments of the Bazhenov formation

Effective thickness includes the carbonate-silica layer thickness with fractures Heff = H carb-silic; Кп.вт = f (Кп общ, Кп.блок), Кн = 0,9 -0,95 Em-Egovskaya

Effective thickness includes thickness of carbonate layers + total matrix thickness: Heff = Htot= Heff мат + Hcarb-silic; Кп.вт = f (Кп общ,

Кп.блок), Кп матр = Кп.тр = 0,1-0,5%, Кн = 0,9 -0,95

Effective thickness includes thickness of fractured carbonate layers + matrix bordering the layer:

Heff = Hcarb-silic + n × Нмат; Кп, Кн – also

Effective thickness includes thickness of the selected porous-fractured, cavernous fractured and fractured reservoirs (based on wireline) Hef = Hfract + H cavern.fracture +H pore.fracture; Кп,ср=(Кп,карб-крем*Нкарб-крем+Кп,тр*Нтр) / Нобщ

Total effective thickness included

1/3 of the total thickness from Bazhenov, Кп 🗢 8%, Кн = 0,9

Stone and East-Stone

> Mid-Nanzym (RITEK)

Em-Egovskaya, Stone, Lempinsky

Palyanovksoye (northern part), Lempinsky

Always moving forward!

Characteristics of the Bazhenov formation

Residue of organic matter – kerogen (average content 23.3% of rock vol.)

Light oil product generation of organic matter

<u>Oil+kerogen</u> containing rocks

Micro-fractured reservoir (matrix)

Macro-fractured reservoir

Doesn't work without stimulation

Always moving forward!

Geology guides the technology

Almost no permeability deters from developing the Bazhenov formation through conventional methods

Main steps:

Analysis and mapping of high-potential areas (fracture zones);
Drilling of horizontal wells with long laterals (1000-1500m and more);

Multistage hydraulic-fracturing to form multiple fractures and/or system of natural fractures;

Development and application of techniques to prevent the rapid decline in oil and gas rates (60-80% in the first 12 years). Implementation of thermogas impact.

Results of drilling and completion of Well 100H

Fracture propagation during multi-stage fracturing and flow profile in the wellbore

45% of the inflow into the wellbore comes from the 4th frac stage (32m³/day)

Thermogas Impact (TGI) on the Bazhenov formation deposits

Недренируемая матрица $\rho_{O\Pi}, c_{O\Pi}, \kappa_{O\Pi}$

Дренируемая зона

Pnn, Cnn

Нефть + газ

Results of Bazhenov formation core material studies

- Distribution of volume of work on technical studies
 - Evaluation of kerogen and carbonate content in samples
 - Kinetics of kerogen decomposition
 - HC expulsion in the autoclave
 - Geomechanical rock properties from core samples
 - Filtration experiments

Results of air injection experiments

Fractional composition and oil physical properties analysis

✓ Oil density decrease.
✓ Fractional composition altered toward lighter fractions.

Oil density decreased from 837 to 800 kg/m³, oil dynamic viscosity from 6,26 to 1,9 mPa*s. All reactive wells experienced increase formation pressure from 20 to 100 atm.

Composition and evolution of GOR analysis ✓ Doubled HC gases Increased fraction of CO2 and N2 in produced gas. ✓ No oxygen in produced gas. Gas composition in production wells CH_4 $C_2 - C_4$ CO_2 3002 N_2 **Temperature profile in well** 219

107 °C

2740

2744

2748

127 °C

Temperature measurements made during the implementation of the second cycle of the experiment showed that temperatures rose to 127°C, i.e. increased by 20°C relative to T_{initial}

лет Тукойл

Results of thermogas impact (TGI) technology

FIRST PHASE Well №219. Mid-Nazym field:

- Injected more than 7 million m³ of air
- Estimated additional oil production 23,000 tons
- No O2 in produced gas, indicative of oxidation processes
- Increased fraction of Co2 and N2 in the produced gas
- Oil density decreased by 5%
- Increased fraction of lighter components in crude production
- Increased volume of produced HC gas
- Special well drilling
- Primary core analysis confirmed the passage of the thermal front

PERSPECTIVES

- Displacement chamber oxidation;
- Core research to assess the spread of oxidation reactions

Results of seismiclocation of emission centers

Поле средней энергии СЭ за период 10.02.2010 12:00 по 05.03.2010 06:00 (выч. ми

Development perspectives of thermal gas impact technology

SECOND PHASE

Well 210. Mid-Nazym field, South Khanty-Mansiysk.

- Commissioning February 2015
- Injected more than 1.2 million m³ of air
- Horizontal well 100H with multistage fracturing

Challenges

- Project implemented on old sites
- Unsatisfactory condition of wells

THIRD PHASE – IMPROVING EFFICIENCY

- Selection of optimal well location and well design
- Mode optimization of the stimulation (Air injection and water-air ratio)
- Cyclical impact on the reservoir
- Use of air enriched with oxygen

Thermal gas impact technology road map

2009	2015	2017	2019		
Phase I	Phase II	Phase III	Commercial implementation		
TGI Test	Test TGI on site with horizontal drilling and multi-stage fracturing	New location with special wells for TGI	Commercial implementation of TGI		
		Experimental area for TGI with horizontal drilling and multi-			
TGI Regulation and process management	Cyclic process	stage fracturing	Injection of oxygen enriched air		
Equipment tests for TGI					

Conclusions (Bazhenov Shale)

A more than the second second

Experimental work is continued at the TGI sites. Evidence of oxygenation processes are obtained during the experiments

Implementation of LUKOIL's program to optimize the development technology will effectively unlock resources and increase production capacity

THANK YOU FOR YOUR ATTENTION

